3.8.22 \(\int \frac {(d+e x)^{3/2} \sqrt {f+g x}}{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\) [722]

3.8.22.1 Optimal result
3.8.22.2 Mathematica [A] (verified)
3.8.22.3 Rubi [A] (verified)
3.8.22.4 Maple [A] (verified)
3.8.22.5 Fricas [A] (verification not implemented)
3.8.22.6 Sympy [F]
3.8.22.7 Maxima [F]
3.8.22.8 Giac [B] (verification not implemented)
3.8.22.9 Mupad [F(-1)]

3.8.22.1 Optimal result

Integrand size = 48, antiderivative size = 161 \[ \int \frac {(d+e x)^{3/2} \sqrt {f+g x}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 \sqrt {d+e x} \sqrt {f+g x}}{c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {2 \sqrt {g} \sqrt {a e+c d x} \sqrt {d+e x} \text {arctanh}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{c^{3/2} d^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \]

output
2*arctanh(g^(1/2)*(c*d*x+a*e)^(1/2)/c^(1/2)/d^(1/2)/(g*x+f)^(1/2))*g^(1/2) 
*(c*d*x+a*e)^(1/2)*(e*x+d)^(1/2)/c^(3/2)/d^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c* 
d*e*x^2)^(1/2)-2*(e*x+d)^(1/2)*(g*x+f)^(1/2)/c/d/(a*d*e+(a*e^2+c*d^2)*x+c* 
d*e*x^2)^(1/2)
 
3.8.22.2 Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.73 \[ \int \frac {(d+e x)^{3/2} \sqrt {f+g x}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 \sqrt {d+e x} \left (\sqrt {c} \sqrt {d} \sqrt {f+g x}-\sqrt {g} \sqrt {a e+c d x} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {f+g x}}{\sqrt {g} \sqrt {a e+c d x}}\right )\right )}{c^{3/2} d^{3/2} \sqrt {(a e+c d x) (d+e x)}} \]

input
Integrate[((d + e*x)^(3/2)*Sqrt[f + g*x])/(a*d*e + (c*d^2 + a*e^2)*x + c*d 
*e*x^2)^(3/2),x]
 
output
(-2*Sqrt[d + e*x]*(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x] - Sqrt[g]*Sqrt[a*e + c*d* 
x]*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])/(Sqrt[g]*Sqrt[a*e + c*d*x])]))/ 
(c^(3/2)*d^(3/2)*Sqrt[(a*e + c*d*x)*(d + e*x)])
 
3.8.22.3 Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {1251, 1268, 66, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d+e x)^{3/2} \sqrt {f+g x}}{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1251

\(\displaystyle \frac {g \int \frac {\sqrt {d+e x}}{\sqrt {f+g x} \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{c d}-\frac {2 \sqrt {d+e x} \sqrt {f+g x}}{c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 1268

\(\displaystyle \frac {g \sqrt {d+e x} \sqrt {a e+c d x} \int \frac {1}{\sqrt {a e+c d x} \sqrt {f+g x}}dx}{c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac {2 \sqrt {d+e x} \sqrt {f+g x}}{c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 66

\(\displaystyle \frac {2 g \sqrt {d+e x} \sqrt {a e+c d x} \int \frac {1}{c d-\frac {g (a e+c d x)}{f+g x}}d\frac {\sqrt {a e+c d x}}{\sqrt {f+g x}}}{c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac {2 \sqrt {d+e x} \sqrt {f+g x}}{c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {2 \sqrt {g} \sqrt {d+e x} \sqrt {a e+c d x} \text {arctanh}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{c^{3/2} d^{3/2} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac {2 \sqrt {d+e x} \sqrt {f+g x}}{c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

input
Int[((d + e*x)^(3/2)*Sqrt[f + g*x])/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2 
)^(3/2),x]
 
output
(-2*Sqrt[d + e*x]*Sqrt[f + g*x])/(c*d*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d 
*e*x^2]) + (2*Sqrt[g]*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[g]*Sqr 
t[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])])/(c^(3/2)*d^(3/2)*Sqrt[a* 
d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])
 

3.8.22.3.1 Defintions of rubi rules used

rule 66
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
2   Subst[Int[1/(b - d*x^2), x], x, Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; Fre 
eQ[{a, b, c, d}, x] &&  !GtQ[c - a*(d/b), 0]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1251
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*(f + g*x)^n*((a 
 + b*x + c*x^2)^(p + 1)/(c*(p + 1))), x] - Simp[e*g*(n/(c*(p + 1)))   Int[( 
d + e*x)^(m - 1)*(f + g*x)^(n - 1)*(a + b*x + c*x^2)^(p + 1), x], x] /; Fre 
eQ[{a, b, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 
 0] && LtQ[p, -1] && GtQ[n, 0]
 

rule 1268
Int[((d_) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_ 
) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x + c*x^2)^FracPart[p]/((d 
 + e*x)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p])   Int[(d + e*x)^(m + p)*(f 
 + g*x)^n*(a/d + (c/e)*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x 
] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
 
3.8.22.4 Maple [A] (verified)

Time = 0.52 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.24

method result size
default \(\frac {\sqrt {g x +f}\, \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (\ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}}{2 \sqrt {c d g}}\right ) c d g x +\ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}}{2 \sqrt {c d g}}\right ) a e g -2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}\right )}{\sqrt {c d g}\, \left (c d x +a e \right ) \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, d c \sqrt {e x +d}}\) \(200\)

input
int((e*x+d)^(3/2)*(g*x+f)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, 
method=_RETURNVERBOSE)
 
output
(g*x+f)^(1/2)*((c*d*x+a*e)*(e*x+d))^(1/2)*(ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2 
*((g*x+f)*(c*d*x+a*e))^(1/2)*(c*d*g)^(1/2))/(c*d*g)^(1/2))*c*d*g*x+ln(1/2* 
(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(c*d*g)^(1/2))/(c*d*g 
)^(1/2))*a*e*g-2*((g*x+f)*(c*d*x+a*e))^(1/2)*(c*d*g)^(1/2))/(c*d*g)^(1/2)/ 
(c*d*x+a*e)/((g*x+f)*(c*d*x+a*e))^(1/2)/d/c/(e*x+d)^(1/2)
 
3.8.22.5 Fricas [A] (verification not implemented)

Time = 0.69 (sec) , antiderivative size = 569, normalized size of antiderivative = 3.53 \[ \int \frac {(d+e x)^{3/2} \sqrt {f+g x}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\left [\frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {\frac {g}{c d}} \log \left (-\frac {8 \, c^{2} d^{2} e g^{2} x^{3} + c^{2} d^{3} f^{2} + 6 \, a c d^{2} e f g + a^{2} d e^{2} g^{2} + 8 \, {\left (c^{2} d^{2} e f g + {\left (c^{2} d^{3} + a c d e^{2}\right )} g^{2}\right )} x^{2} + 4 \, {\left (2 \, c^{2} d^{2} g x + c^{2} d^{2} f + a c d e g\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} \sqrt {g x + f} \sqrt {\frac {g}{c d}} + {\left (c^{2} d^{2} e f^{2} + 2 \, {\left (4 \, c^{2} d^{3} + 3 \, a c d e^{2}\right )} f g + {\left (8 \, a c d^{2} e + a^{2} e^{3}\right )} g^{2}\right )} x}{e x + d}\right ) - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} \sqrt {g x + f}}{2 \, {\left (c^{2} d^{2} e x^{2} + a c d^{2} e + {\left (c^{2} d^{3} + a c d e^{2}\right )} x\right )}}, -\frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {-\frac {g}{c d}} \arctan \left (\frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} \sqrt {g x + f} c d \sqrt {-\frac {g}{c d}}}{2 \, c d e g x^{2} + c d^{2} f + a d e g + {\left (c d e f + {\left (2 \, c d^{2} + a e^{2}\right )} g\right )} x}\right ) + 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} \sqrt {g x + f}}{c^{2} d^{2} e x^{2} + a c d^{2} e + {\left (c^{2} d^{3} + a c d e^{2}\right )} x}\right ] \]

input
integrate((e*x+d)^(3/2)*(g*x+f)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3 
/2),x, algorithm="fricas")
 
output
[1/2*((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(g/(c*d))*log(-(8*c^2*d^ 
2*e*g^2*x^3 + c^2*d^3*f^2 + 6*a*c*d^2*e*f*g + a^2*d*e^2*g^2 + 8*(c^2*d^2*e 
*f*g + (c^2*d^3 + a*c*d*e^2)*g^2)*x^2 + 4*(2*c^2*d^2*g*x + c^2*d^2*f + a*c 
*d*e*g)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x 
 + f)*sqrt(g/(c*d)) + (c^2*d^2*e*f^2 + 2*(4*c^2*d^3 + 3*a*c*d*e^2)*f*g + ( 
8*a*c*d^2*e + a^2*e^3)*g^2)*x)/(e*x + d)) - 4*sqrt(c*d*e*x^2 + a*d*e + (c* 
d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f))/(c^2*d^2*e*x^2 + a*c*d^2*e + 
(c^2*d^3 + a*c*d*e^2)*x), -((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(- 
g/(c*d))*arctan(2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d 
)*sqrt(g*x + f)*c*d*sqrt(-g/(c*d))/(2*c*d*e*g*x^2 + c*d^2*f + a*d*e*g + (c 
*d*e*f + (2*c*d^2 + a*e^2)*g)*x)) + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a* 
e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f))/(c^2*d^2*e*x^2 + a*c*d^2*e + (c^2*d^3 
 + a*c*d*e^2)*x)]
 
3.8.22.6 Sympy [F]

\[ \int \frac {(d+e x)^{3/2} \sqrt {f+g x}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {\left (d + e x\right )^{\frac {3}{2}} \sqrt {f + g x}}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}}}\, dx \]

input
integrate((e*x+d)**(3/2)*(g*x+f)**(1/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x** 
2)**(3/2),x)
 
output
Integral((d + e*x)**(3/2)*sqrt(f + g*x)/((d + e*x)*(a*e + c*d*x))**(3/2), 
x)
 
3.8.22.7 Maxima [F]

\[ \int \frac {(d+e x)^{3/2} \sqrt {f+g x}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int { \frac {{\left (e x + d\right )}^{\frac {3}{2}} \sqrt {g x + f}}{{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((e*x+d)^(3/2)*(g*x+f)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3 
/2),x, algorithm="maxima")
 
output
integrate((e*x + d)^(3/2)*sqrt(g*x + f)/(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^ 
2)*x)^(3/2), x)
 
3.8.22.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 408 vs. \(2 (133) = 266\).

Time = 0.47 (sec) , antiderivative size = 408, normalized size of antiderivative = 2.53 \[ \int \frac {(d+e x)^{3/2} \sqrt {f+g x}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {2 \, {\left (c d^{2} e g^{2} \log \left ({\left | -\sqrt {e^{2} f - d e g} \sqrt {c d g} + \sqrt {-c d^{2} e g^{2} + a e^{3} g^{2}} \right |}\right ) - a e^{3} g^{2} \log \left ({\left | -\sqrt {e^{2} f - d e g} \sqrt {c d g} + \sqrt {-c d^{2} e g^{2} + a e^{3} g^{2}} \right |}\right ) - \sqrt {-c d^{2} e g^{2} + a e^{3} g^{2}} \sqrt {e^{2} f - d e g} \sqrt {c d g}\right )}}{\sqrt {c d g} c^{2} d^{3} e {\left | g \right |} - \sqrt {c d g} a c d e^{3} {\left | g \right |}} - \frac {2 \, g^{2} \log \left ({\left | -\sqrt {e^{2} f + {\left (e x + d\right )} e g - d e g} \sqrt {c d g} + \sqrt {-c d e^{2} f g + a e^{3} g^{2} + {\left (e^{2} f + {\left (e x + d\right )} e g - d e g\right )} c d g} \right |}\right )}{\sqrt {c d g} c d {\left | g \right |}} + \frac {2 \, \sqrt {-c d e^{2} f g + a e^{3} g^{2} + {\left (e^{2} f + {\left (e x + d\right )} e g - d e g\right )} c d g} \sqrt {e^{2} f + {\left (e x + d\right )} e g - d e g} g^{2}}{{\left (c d e^{2} f g - a e^{3} g^{2} - {\left (e^{2} f + {\left (e x + d\right )} e g - d e g\right )} c d g\right )} c d {\left | g \right |}} \]

input
integrate((e*x+d)^(3/2)*(g*x+f)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3 
/2),x, algorithm="giac")
 
output
2*(c*d^2*e*g^2*log(abs(-sqrt(e^2*f - d*e*g)*sqrt(c*d*g) + sqrt(-c*d^2*e*g^ 
2 + a*e^3*g^2))) - a*e^3*g^2*log(abs(-sqrt(e^2*f - d*e*g)*sqrt(c*d*g) + sq 
rt(-c*d^2*e*g^2 + a*e^3*g^2))) - sqrt(-c*d^2*e*g^2 + a*e^3*g^2)*sqrt(e^2*f 
 - d*e*g)*sqrt(c*d*g))/(sqrt(c*d*g)*c^2*d^3*e*abs(g) - sqrt(c*d*g)*a*c*d*e 
^3*abs(g)) - 2*g^2*log(abs(-sqrt(e^2*f + (e*x + d)*e*g - d*e*g)*sqrt(c*d*g 
) + sqrt(-c*d*e^2*f*g + a*e^3*g^2 + (e^2*f + (e*x + d)*e*g - d*e*g)*c*d*g) 
))/(sqrt(c*d*g)*c*d*abs(g)) + 2*sqrt(-c*d*e^2*f*g + a*e^3*g^2 + (e^2*f + ( 
e*x + d)*e*g - d*e*g)*c*d*g)*sqrt(e^2*f + (e*x + d)*e*g - d*e*g)*g^2/((c*d 
*e^2*f*g - a*e^3*g^2 - (e^2*f + (e*x + d)*e*g - d*e*g)*c*d*g)*c*d*abs(g))
 
3.8.22.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(d+e x)^{3/2} \sqrt {f+g x}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {\sqrt {f+g\,x}\,{\left (d+e\,x\right )}^{3/2}}{{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}} \,d x \]

input
int(((f + g*x)^(1/2)*(d + e*x)^(3/2))/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x 
^2)^(3/2),x)
 
output
int(((f + g*x)^(1/2)*(d + e*x)^(3/2))/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x 
^2)^(3/2), x)